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Palladium-Mediated Dealkylation of

N -Propargyl-Floxuridine as a

Bioorthogonal Oxygen-Independent

Prodrug Strategy
Jason T. Weiss, Neil O. Carragher & Asier Unciti-Broceta

Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road

South, Edinburgh EH4 2XR, UK.

Herein we report the development and biological screening of a bioorthogonal palladium-labile prodrug of
the nucleoside analogue floxuridine, a potent antineoplastic drug used in the clinic to treat advanced
cancers. N-propargylation of the N3 position of its uracil ring resulted in a vast reduction of its biological
activity (, 6,250-fold). Cytotoxic properties were bioorthogonally rescued in cancer cell culture by
heterogeneous palladium chemistry both in normoxia and hypoxia. Within the same environment, the
reported chemo-reversible prodrug exhibited up to 1,450-fold difference of cytotoxicity whether it was in the
absence or presence of the extracellular palladium source, underlining the precise modulation of bioactivity
enabled by this bioorthogonally-activated prodrug strategy.

B
ioorthogonally-activated prodrug therapies are a heterogeneous group of experimentally and clinically-
used therapeutic strategies that are founded on a common principle: the site-specific activation of phar-
maceutical substances by the mediation of non-biological, non-perturbing physical or chemical stimuli.

While the nature and properties of the triggering stimulus can be manifestly diverse and seemingly unrelated (e.g.
benign electromagnetic radiations1–4, metal-free click chemistry5–7, mild hyperthermia8,9, bioorthogonal organo-

metallic (BOOM) reactions10–13, etc.), all these strategies are intrinsically linked by the wide-ranging notion of
bioorthogonality coined by Bertozzi a decade ago14–16. By virtue of the bioorthogonal action of an external or

internal source, precursors of various therapeutic substances, such as reactive oxygen species (photodynamic
therapy1), cytotoxic small molecules (activated by photolysis2–4, or chemolysis5–7,10–13) or thermoresponsive
drugs8,9, can be selectively activated within an anatomical area of a patient (e.g. a tumour), thus reducing the

systemic adverse effects of the therapy.

Contributing to the ‘‘explosive’’ emergence of palladium in chemical biology17–25, we have recently reported a

novel application of BOOM chemistry whereby polymer-entrapped palladium nanoparticles are deployed as
extracellular heterogeneous catalysts in cancer cell culture to cleave protecting groups used to inactivate cytotoxic

agents, thus restoring the drugs’pharmacological properties in situ10–12. Unlike other classes of locally-activated
chemotherapies where the activating source generates a short-lived triggering stimulus, the catalytic nature of the
reported BOOM reactions means that palladium-functionalized inserts could induce successive activating stimuli

(catalytic cycles) in a continuous manner. Thereby, following the intratumoral implantation of a palladium-
functionalized device (e.g. by minor surgery), cytotoxic drugs could be locally generated in the area surrounding

the insert at levels sustained by the controlled flow (via dosing regulation) of a systemically-administered
prodrug.

To develop this experimental approach into an effective therapeutic option, such novel class of drug precursors

—i.e. palladium-labile prodrugs—have to be specifically designed to accomplish three goals: (i) eliminating their
pharmacological properties; (ii) minimizing their susceptibility to enzymatic cleavage; and (iii) rendering them

‘‘cleavable’’ by palladium catalysis within physiological and pathophysiological environs. So far, only two pro-
drugs meeting such requirements have been described: 5-fluoro-1-propargyluracil (Pro-5FU, 1)10, which gen-

erates cytotoxic 5-fluorouracil (5FU) upon palladium-mediated N-dealkylation; and N-propargyloxycarbonyl
(N-Poc) gemcitabine (2)11 which undergoes rapid carbamate cleavage by Pd0 catalysis (Fig. 1a). On the basis of its

high sensitivity to palladium and remarkable bioorthogonality (. 500-fold less cytotoxic than 5FU), Pro-5FU (1)
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ideally features the sought-after properties required to implement a
palladium-activated prodrug approach. However, since 5FU is a cyto-
toxic nucleobase of relatively low antiproliferative potency10,12, the
levels of drug required to induce a strong phenotypic response could

become a limiting factor for its clinical application. On the contrary,
the BOOM activation of N-Poc-gemcitabine (2) results in the rapid
and efficient generation of a potent anticancer drug (EC50 , 100 nM
in tumoral cell lines)11. The caveat for this strategy is that, although it

enables the reduction of the prodrug’s bioactivity to levels that were
satisfactory for cell culture studies (, 25-fold decrease of cytotoxicity
relative to the parental drug), the limitations in bioorthogonality of the
N-Poc masking group were exposed in vivo in zebrafish embryos,

where N-Poc-protected rhodamine showed low biochemical stability
in the intestinal tract11. Hence, this masking strategy is likely to be

suboptimal to satisfy the stability demands required for the translation
of this chemistry into the clinic; particularly when the preferable route
of administration is enteral.

Given the superior bioorthogonal properties of N-alkyl protecting

groups and the efficacy of palladium to cleave propargyl groups at
endocyclic nitrogen atoms with lactam/lactim tautomery10,12, we were
prompted to investigate whether this novel chemistry could be compat-
ible with drugs of higher structural complexity such as nucleoside ana-
logues, which are reported to be significantly more potent than cytotoxic

nucleobases26,27. Based on its chemical structure (Fig. 1b), we reasoned
that the clinically-used anticancer drug floxuridine (also known as
FUdR, 3) was optimal for developing, and further validating, a propar-
gylation/depropargylation strategy (coupling & decoupling chemistry28).

Results and Discussion
FUdR is an antineoplastic antimetabolite that upon intracellular
phosphorylation (on its 59-OH) causes the inhibition of thymidylate

synthetase, resulting in the disruption of DNA synthesis and cyto-

toxicity. It is the deoxynucleoside analogue of 5FU, possessing super-

ior activity both in cancer cell lines and animal tumour model

systems29. While 5FU is predominantly converted into its uridine

analogue and incorporated into the RNA, the active forms of

FUdR (phosphorylated derivatives) directly disrupt DNA replica-

tion, what is supposed to account for the comparative difference in

cytotoxicity between the two antimetabolites27,29. FUdR is most com-

monly administered to patients with advanced colorectal, kidney and

stomach cancer, including use as a specific treatment for patients to

whom the primary colorectal tumour has metastasized to the liver,

where it cannot be removed by surgery30. FUdR clinical trials for the

treatment of other late-stage cancers, e.g. advanced pancreatic can-

cer31, have also found improved survival rates as compared to other

chemotherapeutic agents. Treatment with FUdR is however limited

by several severe side effects including dose limiting toxicities upon

diarrhoea and neutropenia30,31. Apart from systemic adverse effects,

its therapeutic action is limited by a short half-life30. FUdR is system-

ically catabolized into 5FU29,32, thus largely reducing the pharmaco-

dynamic advantage of using FUdR over 5FU.

To overcome FUdR pharmacokinetics issues, a number of pro-

drugs have been reported in the literature during the last decade33–39,

among which include studies from Nishimoto, Tanabe and cowor-

kers36–39, who have intensively investigated the development of a

varied range of N3-modified stimuli-sensitive FUdR prodrugs.

These masking strategies significantly decrease the cytotoxic effect

of the drug, thus potentially improving FUdR’s therapeutic window,

but at levels similar to those found by us when using the carbamate

masking strategy11. In contrast, a recent study reported by our group

have shown that alkylation of the N3 position of the related drug 5FU

results in superior suppression of drug’s antiproliferative properties

Figure 1 | (a) Palladium labile precursors of 5FU (1) and gemcitabine (2). (b) FUdR (3) and the proposed palladium-labile precursor Pro-FUdR (4).
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(. 100-fold difference)12. Along with this fact, this hydrogen donor

group is known to display a fundamental role in the substrate re-

cognition of FUdR by both anabolic and catabolic enzymes40.

Consequently, the propargylation of the N3 position of FUdR would

not only suppress drug’s pharmacological activity but should also

protect it from its systemic metabolization into 5FU before reaching

the target. Encouraged by this rationale and the unique chemistry of

the N3 position (it possesses lactam/lactim tautomery), we decided to

investigate the implementation of a bioorthogonal control of drug’s

pharmacodynamics via heterogeneous palladium chemistry. Pro-

FUdR (4) was therefore synthesized following the 3 step procedure

described in Fig. 2. In short, hydroxyl groups in the positions 39and

59 of FUdR (3) were first protected using tert-butyldimethylsilyl

chloride (TBS-Cl) and imidazole to yield bis-silylated derivative

5. N-alkylation using propargyl bromide41 in the presence of 1,8-

diazabicycloundec-7-ene (DBU) and subsequent desilylation of

(non-isolated) intermediate 6 with tetrabutylammonium fluoride

(TBAF) in THF yielded Pro-FUdR (4) in good overall yield.

The efficacy and stability of the deactivation strategy was first

tested in cell culture by performing dose response studies with

FUdR and Pro-FUdR in two human cancer cell lines: colorectal

cancer HCT116 cells and pancreas adenocarcinoma BxPC-3 cells.

As shown in Fig. 3, the 3-propargyl derivative of FUdR displayed a

vast reduction in its biological properties relative to the parental

drug, with a difference in antiproliferative activity between the two

of . 6,000-fold (EC50 (Pro-FUdR)/EC50 (FUdR)). This dramatic

decrease in cytotoxicity does not only underline the relevant role

played by the N3 position in the drug’s biological properties, but also

the remarkable stability (5 bioorthogonality) of the N-propargyl

group to the cell metabolism.

Based on the validated biocompatibility of the components of the

solid support42,43 and its suitable size (spheres of 150 mm in diameter,

much larger than human cells), Pd0-resins consisting of palladium nano-

particles captured in PEG-grafted polystyrene particles (Supplemental

Figure 1) were used to mediate the BOOM conversion of Pro-FUdR into

FUdR. Since advanced solid tumors are estimated to have a slightly

acidic pH (approx. 0.5–1.0 units below that of healthy tissues)44–46,

N-dealkylation of Pro-FUdR’s was tested in PBS (isotonic buffered solu-

tion) at two different pH’s (6.5 and 7.5) to assess the compatibility of the

reaction in both slightly alkaline and acidic pH’s typical from normal and

cancer-like extracellular environs. Pd0-resins (0.67 mg/ml) and Pro-

FUdR (30 mM) were dispersed in the corresponding biocompatible solu-

tion and incubated at 37uC in a thermomixer. Reaction crudes were

analyzed at 3 time points (4, 8 and 24 h) by HPLC using a UV detector.

Chromatogram analysis showed that, while Pro-FUdR was fully stable in

the absence of the triggering stimulus, it completely disappeared in the

presence of Pd0 at each of the pH’s tested before 24 h incubation, gen-

erating FUdR as the main reaction product (see HPLC chromatograms

in Supplemental Figure 2). The effect of the pH was noticeable in the

shorter incubation periods (4 and 8 h), with slightly superior reaction

kinetics being observed at pH 5 7.5 (see Table 1). This experiment

suggests that the palladium-mediated N-dealkylation of Pro-FUdR is

compatible with the range of pH expected to be found in both early

(normoxic) and late-stage (hypoxic) cancers.

The efficacy by which the floxuridine prodrug is reverted to its

active form via heterogeneous palladium catalysis (5 Pro-FUdR’s

toxigenicity11) was investigated in cancer cell culture. BxPC-3 and

HCT116 cells were treated with Pd0-resins (0.67 mg/ml) and Pro-

FUdR (0.0003 to 30 mM) separately (negative controls) or in com-

bination (BOOM activation assay), and unmodified FUdR (0.0003–

30 mM) used as the positive control. As expected, cells independently

treated with either Pro-FUdR or Pd0-resins did not exhibit any

reduction in cell viability (Fig. 4a, b). By contrast, the Pro-FUdR/

Pd0-resins combinations displayed a strong toxigenic effect, evidence

of the in situ generation of FUdR. Under the action of the triggering

stimulus (Pd0-resins), Pro-FUdR exhibited an EC50 value of

0.319 mM in HCT116 cells (see Supplemental Figure 3). Consi-

dering that its EC50 without Pd0-resins was 181.1 mM, Pro-FUdR

displayed a difference in biological properties of . 560-fold from

being in the presence or the absence of palladium (EC50 (Pro-

FUdR)/EC50 (Pro-FUdR 1 Pd0)). In agreement with the lower levels

of drug required to generate a cytotoxic phenotype in BxPC-3 cells,

the EC50 value of the Pro-FUdR/Pd0-resins combination was

0.016 mM (Supplemental Figure 2), thus showing an even higher

Figure 2 | Semisynthesis of 3-propargylfloxuridine, 4 (Pro-FUdR).

www.nature.com/ scientificreports
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disparity between the inactive and reactivated drug (23.2 mM vs.

0.016 mM 5 1,450-fold). To the best of our knowledge, Pro-FUdR

exhibits one of the greatest therapeutic windows displayed in vitro by

an antimetabolite prodrug, while having the smallest pro-moiety (38

atomic mass units) used to mask the activity of this family of drugs.

To evaluate whether the reaction kinetics between Pro-FUdR and

Pd0-resins could match the direct cytotoxic effect provided by treat-

ment with unmodified FUdR, cell proliferation was monitored for

five days by time-lapse imaging using an IncuCyte ZOOM device. As

shown in Fig. 4c–f, cells incubated with either Pro-FUdR (in blue) or

Pd0-resins (in black) showed a growth curve equivalent to that of

untreated cells (in grey). Conversely, combination of Pro-FUdR with

Pd0-resins displayed a cytotoxic effect (in green) identical to that of

cells incubated with the parental drug (in red). Pro-FUdR’s ability to

generate an immediate phenotypic effect only when Pd0-resins have

been deployed in the culture media (see Supplemental Movies 1 and

2) demonstrates the efficacy of the deactivation strategy, the rapid

reaction kinetics of the palladium-mediated N-depropargylation

process and the high cytotoxic activity of the released drug (FUdR

is 50 to 100-fold more potent than 5FU)10.

Last, the compatibility of the Pro-FUdR’s BOOM activation

within oxygen deprived environs was investigated by performing

the conversion assays with colorectal cancer HCT116 cells inside a

hypoxic chamber ([O2] 5 0.5%)46. As shown in Fig. 5, the toxigenic

effect mediated by the Pro-FUdR/Pd0-resins combination in

HCT116 cells in hypoxia were found to be equivalent to that of the

combination in normoxic conditions (Fig. 4b), indicating that the

oxygen levels have minimal or no influence on the BOOM reaction

(see EC50 calculations in Supplemental Figure 4). While this result

was anticipated based upon the mechanistic understanding of the

dealkylation process11, it is nevertheless important because it sug-

gests that the Pd0-mediated prodrug activation would be compatible

Figure 3 | Semi Log dose response curves and calculated EC50 values of Pro-FUdR (in blue) in comparison to unmodified FUdR (in red) in (a) BxPC-3

and (b) HCT116 cells. Cell viability was determined at day 5 using PrestoBlueTM reagent and a microplate reader. Error bars: 6 SD from n 5 3.

Table 1 | Palladium-mediated conversion of Pro-FUdRinto FUdR. Relative percentagesas calculated by chromatogram peak integration

REACTANTS

Pro-FUdR Pro-FUdR1 Pd0

Time pH 5 6.5 pH 5 7.5 pH 5 6.5 pH 5 7.5

PRODUCT (% of FUdR) a t t 5 4 h N/ D N/ D 26.6% 37.3%
at t 5 8 h N/ D N/ D 49.0% 65.9%
at t 5 24 h 0% 0% 100% 100%

www.nature.com/ scientificreports
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with the anticipated oxygen deprived environment found in late-
stage tumours. From a chemical point of view, given that the reduct-

ive environment of the hypoxic chamber is expected to significantly
favour the oxidation state zero of the metal, these results further
support that the dealkylation process is mediated by Pd0 in the
liquid-solid interphase.

Conclusions
In conclusion, a propargylation/depropargylation strategy has been

successfully implemented to develop a truly-bioorthogonal pal-
ladium-labile prodrug of a nucleoside analogue, the cytotoxic agent
floxuridine (FUdR): a potent drug employed in the clinic to fight
advanced solid tumours. Propargylation of the NH group of FUdR’s

pyrimidine ring yielded a biochemically stable derivative (Pro-
FUdR) displaying a vast reduction in cytotoxic activity relative to

the unmodified drug (, 6,250-fold). Complete palladium-mediated

dealkylation of Pro-FUdR was shown to occur in less than 24 h
across a range of pH from slightly acidic to physiological, allowing

for the induction of a strong and rapid toxigenic effect in cancer cell
culture regardless of the oxygen levels. This is the first study to report
that palladium depropargylation chemistry is compatible with the
relatively low pH and oxygen levels typically found in advanced

human cancers. Within the same cellular environment, chemorever-
sible Pro-FUdR enabled an exquisite pharmacodynamic control by

displaying a difference in biological activity of up to 1,450-fold
whether it was in the presence or absence of palladium. From a

synthetic perspective, the efficacy of palladium in triggering the
dealkylation of a compound with the structural complexity of
Pro-FUdR significantly expands the scope and applicability of the

N-depropargylation approach as a bioorthogonal reaction. The

Figure 4 | Palladium-mediated activation of Pro-FUdR in cancer cell culture: (a, c, e) BxPC-3 and (b, d, f) HCT116 cells. (a, b) Log dose response study

of Pro-FUdR toxigenicity. Treatments: untreated cells (negative control); Pd0-resins (0.67 mg/mL, negative control); 0.0003–30 mM of Pro-FUdR

(negative control); 0.0003–30 mM of FUdR (positive control); and Pd0-resin (0.67 mg/mL) 1 0.0003–30 mM of Pro-FUdR (BOOM activation assay). All

experiments, including the untreated cells, contained 0.1% v/vof DMSO. Cell viability was determined at day 5 of treatment using the PrestoBlueTM

reagent (Life Technologies). Error bars: 6 SD from n 5 3. (c, d) Time-lapse imaging of cell proliferation: study of BOOM activation kinetics. Cell growth

was monitored for 120 h using an IncuCyte ZOOM system in an incubator (5% CO2 and 37uC). [Drug/prodrug] 5 (c) 3 or (d) 10 mM. [Pd0-resins] 5

0.67 mg/mL. Error bars: 6 SD from n 5 3. (e, f) Phase-contrast images of HCT116 (e) and BxPC-3 cells (f) after 5 days of treatment. Experiments

are indicated with colored bars (top left corner), corresponding to each specific treatment displayed in (c, d). Pd0-resins are identified as grey spheres

of approx. 150 mm in average diameter.

Figure 5 | Palladium-mediated activation of Pro-FUdR in HCT116 cells under hypoxic conditions. Treatments: untreated cells (negative control);

Pd0-resins (0.67 mg/mL, negative control); 0.03–30 mM of Pro-FUdR (negative control); 0.03–30 mM of FUdR (positive control); and Pd0-resin

(0.67 mg/mL) 1 0.03–30 mM of Pro-FUdR (BOOM activation assay). Cell viability was determined at day 5 using the PrestoBlueTM reagent (Life

Technologies) and a microplate reader. Error bars: 6 SD from n 5 3.

www.nature.com/ scientificreports
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remarkable biological and chemical properties of Pro-FUdR sup-

ports further investigations in clinically-relevant animal models
and underline the precise modulation of prodrug activation that
can be enabled by biocompatible palladium catalysis.

M ethods
General. Cell lines were grown in culture media supplemented with serum (10%FBS)

and L-glutamine (2 mM) and incubated in a tissue culture incubator at 37uC and 5%

CO2. Human pancreas adenocarcinoma BxPC-3 cells (a kind gift from Dr Mark
Duxbury) were cultured in Roswell Park Memorial Institute (RPMI) media. Human

colorectal carcinoma HCT116 cells (a kind gift from Dr Van Schaeybroeck) was
cultured in Dulbecco’s Modified Eagle Media (DMEM).

Cell viability studies. Cells were seeded in a 96 well plate format (at 1,000 cells/well

for HCT116 and 2,500 cells/well for BxPC-3) and incubated for 48 h before

treatment. Each well was then replaced with fresh media containing compound Pro-
FUdR or FUdR and incubated for 5 days. Untreated cells were incubated with DMSO

(0.1% v/v). Experiments were performed in triplicates. PrestoBlueTM cell viability
reagent (10% v/v) was added to each well and the plate incubated for 1 h.

Fluorescence emission was detected using a PerkinElmer EnVision 2101 multilabel

reader (Perkin Elmer; excitation filter at 540 nm and emissions filter at 590 nm). All
conditions were normalized to the untreated cells (100%) and curves fitted using

GraphPad Prism using a sigmoidal variable slope curve.

Pd0-mediated dealkylation of Pro-FUdR in cancer cell culture. HCT116 and BxPC-
3 cells were plated as described above. Each well was then replaced with fresh media

containing: Pd0-resins (0.67 mg/mL); Pro-FUdR (0.3 nM to 30 mM); FUdR (0.3 nM

to 30 mM); or combination of 0.67 mg/mL of Pd0-resins 1 Pro-FUdR (0.3 nM to
30 mM). All experiments, including the untreated cells, contained 0.1% v/v of DMSO

and were performed in triplicates. Cells were incubated with drugs for 5 days.
PrestoBlueTM cell viability reagent (10% v/v) was added to each well and the plates

were incubated for 1 h. Fluorescence emission was detected using a microplate reader

and results normalized.

Time-lapse IncuCyte proliferation study. Cell seeding density was optimized to

reach confluency at day 5. HCT116 and BxPC-3 cells were plated as described above
and each well was then replaced with fresh media containing: Pd0-resins
(0.67 mg/mL); Pro-FUdR (3 mM for BxPC-3 and 10 mM for HCT116 cells); FUdR

(3 or 10 mM); or combination of 0.67 mg/mL of Pd0-resins 1 Pro-FUdR (3 or

10 mM). All experiments, including the untreated cells, contained 0.1% v/v of DMSO

and were performed in triplicate. Each well was imaged every 3 h over 5 d under
standard incubation conditions using an IncuCyteTM ZOOM microscope placed
inside an incubator. Image-based analysis of cell confluence was carried out using the

IncuCyteTM software.

Pd0-mediated dealkylation of Pro-FUdR in hypoxic model of colorectal cancer.

Before treatment, 1,000 cells/well of HCT116 cells were seeded and incubated for 48 h

under normoxic conditions. Cells were then treated as described above and
immediately placed in a hypoxia chamber H35 Hypoxystation (Don Whitley, Yorks),
which was flushed by a gas mixture calibrated to 0.5%O2 concentration. Cell viability

experiments were performed and analysed at day 5 of treatment as described before.
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